Sergi Elizalde* (sergi.elizalde@dartmouth.edu), Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755. Consecutive patterns in permutations.
A permutation π avoids a consecutive pattern σ if no subsequence of adjacent entries of π is in the same relative order as the entries of σ. For example, alternating permutations are those that avoid the consecutive patterns 123 and 321.

I will discuss some results on the enumeration of permutations that avoid consecutive patterns. One of the tools used is the cluster method of Goulden and Jackson, based on inclusion-exclusion, which reduces the enumeration of these permutations to counting linear extensions of certain posets. We obtain differential equations for the generating functions counting occurrences of certain consecutive patterns.

I will also show that among consecutive patterns of length m, the pattern $12 \ldots m$ is the most avoided one, while the pattern $12 \ldots(m-2) m(m-1)$ is the least avoided one. (Received June 29, 2012)

