Bryan Ek, School of Mathematical Sciences, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623-5604, Caitlin VerSchneider, Department of Mathematics, Nazareth College, Rochester, NY 14618, and Darren A. Narayan*, School of Mathematical Sciences, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623-5604. Efficiency of Graphs.
The distance between any two vertices u and v in a graph is the number of edges in a shortest path between u and v. If there is no path connecting u and v, then the distance between u and v is said to be infinity. In 2001, Latora and Marchiori introduced the measure of efficiency between vertices in a graph. The efficiency between two vertices i and j is defined as the inverse of the corresponding distance. The global efficiency of a graph is the average of the efficiencies over all pairs of distinct vertices. We determine global efficiencies for many families of graphs including: powers of paths and cycles, complete multipartite graphs, and various Cartesian products of graphs. We also consider two other measures of efficiency and connectivity. Given a graph G, let G_{i} denote the subgraph induced by the neighbors of vertex v_{i}. Then the local efficiency of G is the average of the global efficiencies of the subgraphs G_{i}. Also the clustering coefficient is the average number of edges in the sugraphs C_{i}. We present familes of graphs where the local efficiency and clustering coefficient are the same and others where they are very different. (Received July 09, 2012)

