1082-05-97 Michael Hallaway, Cong X. Kang and Eunjeong Yi* (yie@tamug.edu), Galveston, TX 77553. On Metric Dimension of Permutation Graphs. Preliminary report.

The metric dimension $\operatorname{dim}(G)$ of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the set of chosen vertices. Let G_{1} and G_{2} be disjoint copies of a graph G, and let $\sigma: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ be a permutation. Then, a permutation graph $G_{\sigma}=(V, E)$, in the sense of Chartrand and Harary, has the vertex set $V=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{u v \mid v=\sigma(u)\}$. We show that $2 \leq \operatorname{dim}\left(G_{\sigma}\right) \leq n-1$ for any connected graph G of order $n \geq 3$. We give examples showing that neither is there a function f such that $\operatorname{dim}(G)<f\left(\operatorname{dim}\left(G_{\sigma}\right)\right)$ for all pairs (G, σ), nor is there a function g such that $g(\operatorname{dim}(G))>\operatorname{dim}\left(G_{\sigma}\right)$ for all pairs (G, σ). Further, we characterize permutation graphs G_{σ} satisfying $\operatorname{dim}\left(G_{\sigma}\right)=n-1$ when G is a complete k-partite graph, a cycle, or a path on n vertices. (Received June 28, 2012)

