1082-05-97 Michael Hallaway, Cong X. Kang and Eunjeong Yi* (yie@tamug.edu), Galveston, TX 77553. On Metric Dimension of Permutation Graphs. Preliminary report.

The metric dimension $\dim(G)$ of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the set of chosen vertices. Let G_1 and G_2 be disjoint copies of a graph G, and let $\sigma : V(G_1) \to V(G_2)$ be a permutation. Then, a permutation graph $G_{\sigma} = (V, E)$, in the sense of Chartrand and Harary, has the vertex set $V = V(G_1) \cup V(G_2)$ and the edge set $E = E(G_1) \cup E(G_2) \cup \{uv \mid v = \sigma(u)\}$. We show that $2 \leq \dim(G_{\sigma}) \leq n-1$ for any connected graph G of order $n \geq 3$. We give examples showing that neither is there a function f such that $\dim(G) < f(\dim(G_{\sigma}))$ for all pairs (G, σ) , nor is there a function g such that $g(\dim(G)) > \dim(G_{\sigma})$ for all pairs (G, σ) . Further, we characterize permutation graphs G_{σ} satisfying $\dim(G_{\sigma}) = n-1$ when G is a complete k-partite graph, a cycle, or a path on n vertices. (Received June 28, 2012)