A function from \mathbb{R}^n into \mathbb{R} is separately continuous, when its restriction to any line parallel to a coordinate axis is continuous. In this talk we will discuss the following generalizations of this notion—the classes of functions $f: \mathbb{R}^n \to \mathbb{R}$ with continuous restrictions to: (1) any line (i.e., linearly continuous functions), (2) any proper hyperplane (hyperplane continuous functions), and (3) any isometric copy of a graph of a k-times differentiable function (D^k-continuous functions).

In particular, we will report a progress on a problem of characterization of the set of points of discontinuity of linearly continuous functions. We present an elementary example of discontinuous hyperplane continuous function on \mathbb{R}^n for arbitrary n. We also describe an example of D^2-continuous function on \mathbb{R}^2 with the set of points of discontinuity having a positive one-dimensional Hausdorff measure. (Received August 29, 2012)