Let \((R, \mathfrak{m}, k)\) be a commutative local noetherian ring, and let \(K = K^R(x)\) be the Koszul complex over \(R\) on the sequence \(x = x_1, \ldots, x_n \in \mathfrak{m}\). Given an integer \(n \geq 1\), a homologically finite DG \(K\)-module \(X\) is weakly \(n\)-spherical if

\[
\text{Ext}^i_R(X, X) \cong \begin{cases}
0 & \text{for } i \neq 0, n \\
 k & \text{for } i = 0, n.
\end{cases}
\]

(This definition is motivated by the notion of “spherical objects” from derived algebraic geometry.) For instance, if \(R\) is a DVR, then \(k\) is a weakly 1-spherical DG \(R\)-module. We prove (a) this is essentially the only way to construct weakly \(n\)-spherical DG \(R\)-modules, and (b) for \(n \neq 2\), this is essentially the only way to construct weakly \(n\)-spherical DG \(K\)-modules. (Received August 26, 2012)