1093-05-41Alexander Halperin* (adh208@lehigh.edu), 14 E Packer Avenue, Department of Mathematics,
Bethlehem, PA 18015, and Colton Magnant, 1332 Southern Drive, Department of Mathematical
Sciences, P.O. Box 8093, Statesboro, GA 30460. H-linked graphs with prescribed lengths.

Given a multigraph H, a graph G is H-linked if every injective map $f : V(H) \longrightarrow V(G)$ can be extended into an H-subdivision in G. Given a multigraph H and an integer sequence $\mathcal{D} = \{d_{ij,s} \mid (v_i v_j, s) \in E(H), d_{ij,s} \geq 2\}$, a graph G is (H, \mathcal{D}, e) -linked if every injective map $f_1 : V(H) \longrightarrow V(G)$ can be extended into an H-subdivision (f_1, f_2) in G such that each path $f_2(v_i v_j, s)$ has length within e of $d_{ij,s}$. If e = 0, then we say G is (H, \mathcal{D}) -linked. We establish a sharp minimum degree condition for a large graph G to be $(H, \mathcal{D}, 1)$ -linked. Additionally, we establish a sharp minimum degree condition for a large graph G to be $(H, \mathcal{D}, 1)$ -linked. (Received July 08, 2013)