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A natural generalization of base B expansions is Zeckendorf’s Theorem, which states that every integer can be uniquely

written as a sum of non-consecutive Fibonacci numbers {Fn}, with F1 = 1, F2 = 2. If instead we allow the coefficients in

the decomposition to be zero or ±1, the resulting expression is known as the far-difference representation. Alpert proved

that a far-difference representation exists and is unique under certain restraints, specifically that two adjacent summands

of the same sign must be at least 4 indices apart and those of opposite signs must be at least 3 indices apart.

We prove that a far-difference representation can be created using sets of Skipponacci numbers, which are generated

by recurrence relations of the form Sn+1 = Sn + Sn−k for k ≥ 0. Now every integer can be written uniquely as a sum of

the ±Sn’s such that every two terms of the same sign differ in index by at least 2k + 2, and every two terms of opposite

signs differ in index by at least k + 2. Additionally, we prove that the number of positive and negative terms converges

to a Gaussian. The proof uses recursion to obtain the generating function for having a fixed number of summands, which

we prove converges to the generating function of the Gaussian. (Received August 09, 2013)
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