1093-11-206 Eva G Goedhart* (egoedhart@brynmawr.edu) and Helen G Grundman. The complete solution of $N X^{2}+2^{L} 3^{M}=Y^{N}$.
Let $N>1$ be an integer and consider the Diophantine equation

$$
N X^{2}+2^{L} 3^{M}=Y^{N}
$$

We have proven that this equation has no solutions with $L, M, X, Y \in \mathbb{Z}^{+}$and $\operatorname{gcd}(N X, Y)=1$. Our proof incorporates a variety of standard methods including the use of defective Lehmer pairs and class number arguments.

In this talk, I will discuss these methods along with earlier results, then present our proof. (Received August 14, 2013)

