Abdul-Nasser El-Kassar* (abdulnasser.kassar@lau.edu.lb), Lebanese American University, P.O. Box 13-5053, Beirut, 1102 2801, Lebanon, and Therrar El-Kadri. Finite Commutative Rings Having a Boolean kth Group of Units.

Let (R, +, .) be a finite commutative ring with identity and let (U(R), .) be its group of units. El-Kassar and Chehade [Math. Balkanica 20 (2006), no. 3-4, 275–286; MR2269732 (2007g:16048)] showed that U(R) supports a ring structure (U(R), ., *) isomorphic to a ring $R^1 = \mathbf{Z}_{n_1} \oplus \mathbf{Z}_{n_2} \oplus ... \oplus \mathbf{Z}_{n_i}$. The second group of units of the ring R, denoted by $U^2(R)$, is defined to be U(U(R)). The operations of $U^2(R)$ are described using the isomorphism $U^2(R) \cong U(R^1)$. The kth group of units of the ring R is defined iteratively by $U^k(R) = U(U^{k-1}(R))$. Since $U^k(R)$ eventually becomes a Boolean ring, we define the class of R, denoted by C(R), to be the positive integer k such that $U^k(R)$ is Boolean. In this paper, we consider the problem of determining all rings R having C(R) = k, where k is a fixed positive integer. In particular, we show that the class of all rings \mathbf{Z}_n with $C(\mathbf{Z}_n) = k$ is determined in terms of the divisors of certain integer B_k . Algorithms for finding B_k are developed.

(Received August 20, 2013)