1093-11-355 Diego Marques and Jonathan Sondow* (jsondow@alumni.princeton.edu). The Schanuel Subset Conjecture implies the Gelfond Power Tower Conjecture.

We introduce the Schanuel Subset Conjecture (SSC). It states that, if the complex numbers $\alpha_1, ..., \alpha_n$ are linearly independent over \mathbb{Q} , and if the set $\{\alpha_1, ..., \alpha_n, e^{\alpha_1}, ..., e^{\alpha_n}\}$ is $\overline{\mathbb{Q}}$ -dependent on a subset $\{\beta_1, ..., \beta_n\}$, then $\beta_1, ..., \beta_n$ are algebraically independent.

It is easily shown that Schanuel's Conjecture implies SSC. Are the two conjectures in fact equivalent?

In a 1934 announcement in *Comptes Rendus*, Gelfond stated a vast generalization of the Gelfond-Schneider Theorem, but he never published a proof. A special case, which we call the *Gelfond Power Tower Conjecture*, asserts that, if $z = e^{\omega}$ or $z = \alpha$, where $\omega \neq 0$ and α are algebraic numbers with α irrational, then the power towers $z^z, z^{z^z}, z^{z^{z^z}}, \ldots$ are algebraically independent.

Our main result is that, if the Schanuel Subset Conjecture is true, then the Gelfond Power Tower Conjecture is also true.

An e-print is available at http://arxiv.org/abs/1212.6931. (Received August 21, 2013)