1093-35-153

Maya Chhetri* (maya@uncg.edu), Department of Mathematics and Statistics, UNC Greensboro, Greensboro, NC 27410, and Petr Girg. Existence of positive solutions for a class of superlinear semipositone systems.

We consider an elliptic system of the form

$$-\Delta u = \lambda f(x, v) \quad \text{in} \quad \Omega,$$

$$-\Delta v = \lambda g(x, u) \quad \text{in} \quad \Omega,$$

$$u = 0 = v \quad \text{on} \quad \partial \Omega,$$

where $\lambda > 0$ is a parameter and Ω is a bounded domain in R^N with $C^{2,\alpha}$ boundary $\partial\Omega$. Here the nonlinearities $f,g:\Omega\times[0,\infty)\to R$ are Carathéodory functions that are superlinear at infinity and satisfy f(x,0)<0 and g(x,0)<0 almost everywhere in Ω . We prove that the system has a positive strong solution for λ small by using degree theory combined with re-scaling argument and a uniform L^∞ apriori bound of positive strong solutions to some Lane-Emden type of systems. (Received August 11, 2013)