The known construction of a generic polynomial for the quaternion group Q_8 over \mathbb{Q} is generalised to produce generic polynomials for larger quaternion groups over fields containing appropriate ‘cosines’, such as \mathbb{R}. Since Q_{16} is known to \textit{not} have a generic polynomial over \mathbb{Q}, these ‘cosines’ are necessary. In the case of Q_{16}, we get a generic polynomial over $\mathbb{Q}(\sqrt{2})$. (Received February 10, 2014)