Edge-decompositions of graphs with high minimum degree.

A fundamental theorem of Wilson states that, for every graph F, every sufficiently large F-divisible clique has an F-decomposition. Here a graph G is F-divisible if $e(F)$ divides $e(G)$ and the greatest common divisor of the degrees of F divides the greatest common divisor of the degrees of G, and G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F. We extend this result to graphs which are allowed to be far from complete: we show that every sufficiently large F-divisible graph G on n vertices with minimum degree at least $(1 - |F|^{-4})n$ has an F-decomposition. Our main contribution is a general method which turns an approximate decomposition into an exact one. (Received July 28, 2014)