Deriving Range Circle Center and Radius from Domain Circle Center and Radius Under the Linear Fractional Transformation (LFT):

\[w = \frac{az + b}{cz + d} \]

Preliminary report.

It is well known that Linear Fractional Transformations (LFT’s):

\[w = \frac{az + b}{cz + d}, \]

where \(z, w, a, b, c, \) and \(d \) are all in the Complex Plane, map the set of lines and circles into itself. Then for a Domain Circle, \(|z - C| = R \), not passing through the pole \(\left(\frac{-d}{c} \right) \) of the LFT, which maps to a Range Circle \(|w - C^*| = R^* \), we derive explicit formulas for the range circle’s \(C^* \) and \(R^* \) in terms of \(C \) and \(R \) from the domain circle and the coefficients \(a, b, c, \) and \(d \) of the LFT. (Received July 01, 2014)