For any H, G countable discrete groups with H abelian and G acting on H by automorphisms, we define the generalized q-gaussian algebras $A \rtimes \Gamma_q(G, K)$, where $A = L(H)$ and K is an infinite dimensional separable Hilbert space. We then prove that if the pairs H, G and H', G' satisfy a certain "strong rigidity" assumption, the commutator subgroups $[G, G]$ and $[G', G']$ are ICC, the actions $G \rtimes A$, $G' \rtimes B$ are ergodic and G, G' belong to a fairly large class of groups (including all non-amenable groups with the Haagerup property) then $A \rtimes \Gamma_q(G, K) = B \rtimes \Gamma_q(G', K')$ implies that A and B are unitarily conjugate inside $M = A \rtimes \Gamma_q(G, K)$ and $R_G \cong R_{G'}$, where R_G, $R_{G'}$ are the countable, p.m.p. equivalence relations implemented by the actions of G and G' on A and B, respectively.

(Received July 15, 2014)