For a sequence \(s = (s_1, \ldots, s_n) \) of positive integers, an \(s \)-inversion sequence is an integer sequence \(e = (e_1, \ldots, e_n) \) where \(0 \leq e_i < s_i \). An ascent in \(e \) is an index \(i, 0 < i < n \), such that \(e_i/s_i < e_{i+1}/s_i \). If \(e_1 > 0 \) then 0 is also an ascent.

The \(s \)-Eulerian polynomials are the ascent polynomials of \(s \)-inversion sequences. They are related through Ehrhart theory to \(s \)-lecture hall partitions. They generalize descent polynomials of Coxeter groups of type \(A \) and \(B \). It has been shown that the \(s \)-Eulerian polynomials are all real-rooted.

In contrast, the inflated \(s \)-Eulerian polynomials weight an \(s \)-inversion sequence by its last entry as well as its ascent number. In this talk we review recent results about inflated Eulerian polynomials and Gorenstein lecture hall cones; we establish some new properties of inflated Eulerian polynomials; and we find relationships to polynomials arising in the study of the maxdrop statistic on permutations. (Received August 31, 2014)