In this talk we focus on a tree metric called k-interval cospeciation (k-IC). The notion of the k-IC came from the host-parasite analysis. Biologically, it is highly unlikely that a large number of consecutive speciations can accumulate in a host lineage, without any reactionary speciation in parasite. Thus, when reconstructing host and parasite trees, we might assume that only a bounded number of consecutive speciations can occur in any host lineage before a reactionary speciation in parasite (and vice versa). Combinatorially this implies that for each pair of host species A, B, and corresponding parasite species a, b, the number of edges between A, B is within k of the number of edges between a, b. We say such a cophylogeny satisfies k-interval cospeciation.

Here we will compare the k-IC tree distance with other tree metrics, and then we will discuss the distribution of the k-IC metric between two randomly generated trees if we fix n. (Received September 02, 2014)