The Hoffman-Singleton graph H, a member of the small family of Moore graphs of diameter 2, is a well known 7-regular undirected graph with 50 vertices and 175 edges. We construct H as a rank 3 graph with subdegrees $(1, k=7$ and $l=42)$, using the alternating group A_7. There are 63 distinct A_5’s in A_7 which fall into exactly two conjugacy classes of subgroups of sizes 21 and 42. An A_5 of the first class of size 21 fixes two points, whereas an A_5 of the second class of size 42 fixes one point and acts transitively on the remaining 6 points. We use the 42 A_5’s of the second class to construct the Hoffman-Singleton graph. This construction is possible because S_6 is the only member of the family of symmetric groups S_n to possess outer-automorphisms.

(Received September 03, 2014)