There is a constant c such that for every $n \in \mathbb{N}$, there is an N_n such that for every $N \geq N_n$ there is a polytope P in \mathbb{R}^n with N vertices such that

$$\text{vol}_{n-1}(\partial(B_2^n \Delta P)) \leq c \frac{\text{vol}_{n-1}(\partial B_2^n)}{N^{\frac{2}{n-1}}}$$

where for two convex bodies K and L, $\text{vol}_{n-1}(\partial(K \Delta L))$ is the surface area of the symmetric difference of K and L. (Received August 28, 2014)