1099-13-229 William Heinzer (swiegand@math.unl.edu), 2400 Sheridan Blvd, Lincoln, 68502, Christel Rotthaus (swiegand@math.unl.edu), Lincoln, 68502, and Sylvia M Wiegand* (swiegand@math.unl.edu), Dept pf Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, NE 685880130. An iterative meta-example constructed using power series.

Let x and y be indeterminates over a field k, let $R = k[x, y]_{(x,y)}$ and let R^* be the (x)-adic completion $k[y]_{(y)}[[x]]$ of R. We first apply a simple form of a basic construction that we have developed to adjoin an element σ of xk[[x]] that is transcendental over k(x); for example with $k = \mathbb{Q}$, take $\sigma = e^x - 1$. For this, set $A := k(x, y, \sigma) \cap k[y]_{(y)}[[x]]$. Then $A = C[y]_{(x,y)}$, where $C := k(x, e^x) \cap k[[x]]$, a DVR. Thus the ring A is Noetherian and a regular domain; moreover A is a nested union of localized polynomial rings in three variables that is naturally associated to A.

We iterate the construction using $\tau \in yk[[y]]$ transcendental over k(y). The resulting ring $A' := k(x, y, \sigma, \tau) \cap k[[x, y]]$ is a two-dimensional regular local domain with maximal ideal (x, y)A' and completion $\hat{A}' = k[[x, y]]$. There is a nested union B' of localized polynomial rings in four variables contained in and naturally associated to A'. Depending upon the choices of σ and τ , sometimes B' = A' and sometimes $B' \subsetneq A'$.

We give some insights, results and examples concerning whether B' = A' and whether B' is Noetherian. (Received February 09, 2014)