1099-42-276 Michael W Frazier* (frazier@math.utk.edu), 227 Ayres Hall, 1403 Circle Drive, Knoxville, TN 379961320, and Svetlana Roudenko. Traces of Weighted Sobolev and Potential Spaces. Preliminary report.

Let u be an A_p weight on \mathbb{R}^{n+1} and v a doubling weight on \mathbb{R}^n . Define the trace operator Trf(x') = f(x', 0), where $x' \in \mathbb{R}^n$ and f is a function on \mathbb{R}^{n+1} . If $\alpha > \frac{1}{p} + n\left(\frac{1}{p} - 1\right)_+ + \frac{\beta - n}{p}$, where β is the doubling exponent of v, then the trace operator is bounded from the weighted Bessel potential space $W^{\alpha,p}(u)$ (which coincides with the weighted Sobolev space $W^{k,p}(u)$ if $\alpha = k \in \mathbb{N}$) into the weighted Besov space $B_p^{\alpha - 1/p, p}(v)$ if and only if there exists C > 0 such that

$$\frac{1}{|I|} \int_{I} v \, dx' \le C \frac{1}{|Q(I)|} \int_{Q(I)} v(x) \, dx$$

for all dyadic cubes $I \subseteq \mathbb{R}^n$ with side length $\ell(I) \leq 1$, where $Q(I) = I \times [0, \ell(I)]$. If u and v satisfy the converse inequality, then there exists a continuous linear map $Ext : B_p^{\alpha-1/p, p}(v) \to W^{\alpha, p}(u)$. If both inequalities hold, $Tr \circ Ext$ is the identity on $B_p^{\alpha-1/p, p}(u)$. More generally, the results hold with $W^{\alpha, p}(u)$ replaced by the Triebel-Lizorkin space $F_p^{\alpha, q}(u)$ for any $0 < q \leq \infty$. (Received February 10, 2014)