1099-42-308

Benjamin David Robinson* (jamin.robinson@gmail.com), 815 N 52nd St, Apt 1015, Phoenix, AZ 85008, William Moran (wmoran@unimelb.edu.au), Level 4, 204 Lygon Street, Carlton, VIC 3053, Australia, and Douglas Cochran (cochran@asu.edu), Electrical Engineering Dept, P.O. Box 875706, Tempe, AZ 85287. Some new g-frames arising from the quasi-regular representation. Preliminary report.

In Duffin and Schaeffer's original paper on frames, the authors determined multiple sets of conditions on sequences of characters ..., $\chi_{-1}, \chi_0, \chi_1, \chi_2, ...$ on \mathbb{R} such that $\{\chi_j|_{[-1/2,1/2)}\}$ form a frame for $H = L^2[-1/2,1/2)$. For one, if the character χ_j is identified with $\omega_j \in \mathbb{R}$, $\{\chi_j|_{[-1/2,1/2)}\}$ forms a frame for H if all the differences $|\omega_j - j|$ are less than M, for some appropriately chosen small number M > 0, a result which is virtually identical for \mathbb{R}^n . In this talk we discuss the analogous result for each of one or two other connected, locally compact Lie groups G (which will involve the so-called quasi-regular representation of G). That is, we give a condition on representations $\pi_1, \pi_2, ...$ on G such that $\{\pi_j\}$, suitably interpreted, forms a g-frame for a nontrivial Hilbert subspace H of $L^2(G)$. In particular this implies a condition on $\pi_1, \pi_2, ...$ such that $f \in H$ is uniquely determined by $\pi_1(f), \pi_2(f), ...$ (where $\pi(f)$ for $f \in H$ is defined to be the operator $\int_G f(x)\pi(x) dx$), which condition we believe to be new. (Received February 10, 2014)