Yoann N. Dabrowski* (dabrowski@math.univ-lyon1.fr), 69005 Lyon, France. Higher order regularity of conjugate variables along free brownian motions. Preliminary report. Voiculescu's non-microstates free entropy is based on the computation of conjugate variables ξ_t (the free analogue of score function) along a free brownian motion starting at a rather general vector of self-adjoint non-commutative random variables. Voiculescu proved the first regularity property, namely $\xi_t, t > 0$ is in $L^{\infty}(M, \tau)$. The author proved last year using time reversals of free diffusions that ξ_t is in the domain of the free difference quotient ∂ as an operator in L^2 for almost every t. After reviewing this background, we will explain how the use of continuous time martingale techniques coming from [Junge,Perrin] (arXiv:1301.2071) enables to prove $\partial \xi_t$ are in various L^p -modules. Using also Haagerup tensor product techniques, one can get regularity of higher order free difference quotients of ξ_t . This search for more regularity is motivated by obtaining a strong solution for the time reversal of free brownian motion where ξ_t appears as a drift. This strong solution property is true in the classical case by Veretennikov's result improved recently by Krylov, Priola etc and is important for free entropy applications. (Received February 09, 2014)