1099-47-172 Daniel Beltita, Sasmita Patnaik* (sasmita@iitk.ac.in) and Gary Weiss. CARTAN SUBALGEBRAS OF OPERATOR IDEALS.

Denote by $\mathcal{U}_{\mathcal{I}}(\mathcal{H})$ the group of all special unitary operators $V \in \mathbf{1} + \mathcal{I}$ where \mathcal{H} is a separable infinite-dimensional complex Hilbert space and \mathcal{I} is an ideal of $B(\mathcal{H})$. An ideal has a natural structure of a Lie algebra where the Lie bracket is defined as the commutator of operators. For every Cartan subalgebra \mathcal{C} of \mathcal{I} (maximal abelian self-adjoint subalgebra of \mathcal{I}), its conjugacy class is defined as the set of Cartan subalgebras $\{\mathcal{VCV}^* \mid \mathcal{V} \in \mathcal{U}_{\mathcal{I}}(\mathcal{H})\}$. For nonzero proper ideals \mathcal{I} we construct an uncountable family of Cartan subalgebras \mathcal{C} of \mathcal{I} with distinct conjugacy classes under the action of the group $\mathcal{U}_{\mathcal{I}}(\mathcal{H})$. This is in contrast to the by now classical observation of P. de La Harpe who showed that when \mathcal{I} is any of the Schatten ideals, there is precisely one conjugacy class under the action of the full group of unitary operators. (Received February 07, 2014)