1099-58-81 Gerardo A Mendoza* (gmendoza@temple.edu), Philadelphia, PA 19122. Spectral instability of selfadjoint extensions.

Let M be a smooth compact manifold with boundary, boundary defining function x, and smooth b-density \mathfrak{m}_b . Further let $E, F \to M$ Hermitian vector bundles and $A : C_c^{\infty}(\mathring{M}; E) \subset x^{-\nu/2}L_b^2(M; E) \to x^{-\nu/2}L_b^2(M; F)$ a symmetric elliptic cone operator which is bounded from below and admits more than one selfadjoint extension. The family, \mathfrak{SA} , of domains of such extensions has the structure of a smooth compact real-analytic manifold. The spectrum of A with any domain $D \in \mathfrak{SA}$ is bounded below, but there exist domains D_0 which admit a neighborhood $U \subset \mathfrak{SA}$ in which the property $\forall \zeta \in \mathbb{R} \exists D \in U \text{ s.t. } \zeta > \inf \operatorname{spec}(A_D)$ holds. I will give a characterization of these spectrally unstable domains. (Received January 28, 2014)