A classical combinatorial problem (with solutions originally due to Hurwitz and Dénes) is to count factorizations of the long cycle as a product of transpositions. In this talk, I will discuss a q-analogue, replacing the symmetric group with $GL(n,q)$, the long cycle with a “Singer cycle”, and transpositions with reflections. The pleasant central result is that the number of shortest such factorizations (i.e., with n reflections) is $(q^n - 1)^{n-1}$. I will also mention some generalizations (notably, to factorizations of any length) and open questions. The main tool is the ordinary representation theory of $GL(n,q)$. (Received January 21, 2014)