Lee Klingler, Warren McGovern and Madhav P Sharma* (msharma2@fau.edu), Florida Atlantic University, Department of Mathematical Sciences, 777 Glades Rd, Boca Raton, FL 33431.

Gaussian Property of the rings \(R(X) \) and \(R(X) \). Preliminary report.

The content of a polynomial \(f \) over a commutative ring \(R \) is the ideal \(c(f) \) of \(R \) generated by the coefficients of \(f \). A commutative ring \(R \) is said to be Gaussian if \(c(fg) = c(f)c(g) \) for all polynomials \(f \) and \(g \) over \(R \). A number of authors have formulated necessary and sufficient conditions for \(R(X) \) (respectively \(R(X) \)) to be semihereditary, w. dim \(\leq 1 \), Arithmetical, and Prüfer. An open problem has been for the Gaussian Property. We give a necessary and sufficient condition for \(R(X) \) and \(R(X) \) to be Gaussian for a commutative ring \(R \) whose the square of the nilradical is zero. (Received January 17, 2014)