Let M be a von Neumann algebra and α an action of a compact group G on M. The action α is called minimal if it is faithful and the relative commutant of the fixed point algebra, $(M^\alpha)' \cap M$, is trivial. We study the relationship between the minimality of the dynamical system (M, α, G) and the outerness of the action and the dual coaction. In case M is a C*-algebra, α is called minimal if the relative commutant of M^α in the algebra of local multipliers, $\mathcal{M}_{\text{loc}}(M)$ of M is trivial. We describe several structural properties of the w^*-dynamical system that are equivalent to minimality and study the corresponding ones for the case of C*-dynamical systems. (Received December 23, 2013)