Let φ be an analytic self-map of open unit disk \mathbb{D}. The operator given by $(C_\varphi f)(z) = f(\varphi(z))$, for $z \in \mathbb{D}$ and f analytic on \mathbb{D} is called a composition operator. Let ω be a weight function such that $\omega \in L^1(\mathbb{D}, dA)$, where dA denotes the normalized area measure on \mathbb{D}. The generalized weighted Nevanlinna class \mathcal{N}_ω consists of all analytic functions f on \mathbb{D} such that $\|f\|_\omega = \int_{\mathbb{D}} \log^+(|f(z)|)\omega(z)dA(z)$ is finite; that is, \mathcal{N}_ω is the space of all analytic functions belong to $L^1_{\log^+}(\mathbb{D}, \omega dA)$. In this talk we investigate the boundedness, compactness and the essential norm of these composition operators on the space \mathcal{N}_ω. (Received February 22, 2015)