1112-03-563 Rutger Kuyper* (mail@rutgerkuyper.com), Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706-1388. A measure of uniformity.

There are two well-known ways to compare the difficulty of two mass problems, i.e. of sets $\mathcal{A}, \mathcal{B} \subseteq \omega^{\omega}$. The first of these, Medvedev reducibility, says that \mathcal{A} reduces to \mathcal{B} if there is a single Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$. On the other hand, we say that \mathcal{A} Muchnik reduces to \mathcal{B} if every element of \mathcal{B} computes an element of \mathcal{A} .

These two reducibilities can be seen as two opposite extremes: Medvedev reducibility is as uniform as possible, while Muchnik reducibility is as non-uniform as possible. Therefore, if some reduction is not completely uniform, one can only conclude that it is a Muchnik reduction, even though intuitively it might feel like there is some uniformity contained in the reduction.

We propose a hierarchy of reducibilities between Medvedev and Muchnik reducibility, which capture different levels of uniformity. We say that \mathcal{A} n-uniformly reduces to \mathcal{B} if there is a Π_n^0 -cover $\mathcal{V}_0, \mathcal{V}_1, \ldots$ of \mathcal{B} such that the elements from $\mathcal{B} \cap \mathcal{V}_i$ uniformly compute elements from \mathcal{A} . We use this concept to measure the uniformity of some well-known Muchnik reductions. (Received August 11, 2015)