Fix a nonnegative integer d, a field \mathbb{F}, and a vector space V over \mathbb{F} with dimension $d+1$. Let T denote an invertible upper triangular matrix in $\text{Mat}_{d+1}(\mathbb{F})$. Using T we construct three flags on V. We find a necessary and sufficient condition on T for these three flags to be totally opposite. In this case, we use these three totally opposite flags to construct a Billiard Array B on V. It is known that B is determined up to isomorphism by a certain triangular array of scalar parameters called the B-values. We compute these B-values in terms of the entries of T. We describe the set of isomorphism classes of Billiard Arrays in terms of upper triangular matrices.

(Received July 27, 2015)