Given a skew partition λ/μ, the dual stable Grothendieck polynomial corresponding to it is a formal power series in infinitely many commuting variables x_1, x_2, x_3, \ldots; it is defined as the sum of x^{ircont}_T over all reverse plane partitions T of shape λ/μ. Here, ircont_T denotes the integer sequence whose i-th term is the number of columns of T which contain the entry i, and x^α denotes the monomial $x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\cdots$ (in commuting variables) for any sequence $\alpha = (\alpha_1, \alpha_2, \alpha_3, \ldots)$ of nonnegative integers. Lam and Pylyavskyy have shown that this dual stable Grothendieck polynomial is a symmetric function, whose highest homogeneous component is the Schur function $s_{\lambda/\mu}$.

In a paper that is to appear on the arXiv soon, Pavel Galashin, Gaku Liu and I have obtained a multiparameter generalization of this construction, which also generalizes the Schur functions. We have proven that our generalized functions are still symmetric, and obey a version of the Littlewood-Richardson rule. We furthermore conjecture a generalized version of the Jacobi-Trudi identity exhibiting a surprising symmetry. (Received August 06, 2015)