It is proved that every $(4kp - 2p + 2q)$-connected graph contains p spanning subgraphs G_i for $1 \leq i \leq p$ and q spanning trees such that all $p + q$ subgraphs are pair-wise edge-disjoint and such that each G_i is k-edge-connected, essentially $(2k - 1)$-edge-connected, and $G_i - v$ is $(k - 1)$-edge-connected for all $v \in V(G)$. This extends the well-known result of Nash-Williams and Tutte on packing spanning trees, a theorem that every $6p$-connected graph contains p edge-disjoint spanning 2-connected subgraphs, and a theorem that every $(6p + 2q)$-connected graph contains edge-disjoint p spanning 2-connected subgraphs and q spanning trees. (Received August 11, 2015)