Let \( q \) be a prime power. Using geometry of the finite projective plane \( \mathbb{P}^2(F_q) \) we construct a Hermitian Lorentzian lattice \( L_q \) of dimension \( (q^2 + q + 2) \) defined over a certain number ring that depends on \( q \). We show that infinitely many of these lattices are modular, that is, the dual lattice of \( L_q \) is isometric to a scaled copy of \( L_q \). Under certain conditions on \( q \), the Lorentzian lattice \( L_q \) yields an even self dual positive definite \( 2q(q + 1) \) dimensional \( \mathbb{Z} \)-lattice \( M_q \) whose automorphism group contains the automorphisms of \( \mathbb{P}^2(F_q) \). General conjectures about prime numbers imply that there are infinitely many such prime numbers \( q = 3, 47, 59, 71, 131 \cdots \). We find that \( M_3 \) is the Leech lattice and automorphism group of the Lorentzian lattice \( L_3 \) seems to be closely related to the monster simple group. (Received August 05, 2015)