Calculations of Higher Topological Hochschild Homology.

For R a commutative ring, M an R-module, and X, a pointed simplicial set, J.-L. Loday defined a simplicial R-module $\mathcal{L}_X(R; M)$ which in each simplicial degree n consists of a tensor product, indexed by all the n-simplices in X_n, of copies of R, except that over the base point one has a copy of M. The homology groups of $\mathcal{L}_X(R; M)$ with respect to $d = \sum_{i=0}^{n} (-1)^i d_i$ are homotopy invariants of $|X|$. Taking X, to be the minimal model of S^1, one recovers the standard Hochschild complex for R with coefficients in M. Using $X = S^n$ instead, one gets higher Hochschild homology groups. One can do the same thing when R is a commutative ring spectrum and M an R-module to get the higher topological Hochschild homology groups. If R and M are Eilenberg-Mac Lane spectra, taking the sphere spectrum as the ground ring spectrum gives a finer invariant than using an Eilenberg-Mac Lane spectrum, which recovers the algebraic case. I will discuss basic higher Hochschild homology calculations, our calculation of $\text{THH}^{[n]}(\mathbb{Z}; \mathbb{F}_p)$, as well as a calculation of $\text{THH}^{[n]}(\mathbb{F}_p)$. (Received August 06, 2015)