Fix a nonnegative integer d. Let \mathbb{F} denote a field, and let V denote a vector space over \mathbb{F} with dimension $d + 1$. By a decomposition of V we mean a sequence $\{V_i\}_{i=0}^d$ of one-dimensional subspaces whose direct sum is V. Let $\{V_i\}_{i=0}^d$ denote a decomposition of V. A linear transformation $A \in \text{End}(V)$ is said to lower $\{V_i\}_{i=0}^d$ whenever $AV_i = V_{i-1}$ for $1 \leq i \leq d$ and $AV_0 = 0$. The map A is said to raise $\{V_i\}_{i=0}^d$ whenever $AV_i = V_{i+1}$ for $0 \leq i \leq d - 1$ and $AV_d = 0$. A pair of elements A, B in $\text{End}(V)$ is called lowering-raising (or LR) whenever there exists a decomposition of V that is lowered by A and raised by B. A triple of elements A, B, C in $\text{End}(V)$ is called LR whenever any two of A, B, C form an LR pair. We classify up to isomorphism the LR triples. There are nine infinite families of solutions. We show that each solution A, B, C satisfies some relations that resemble the defining relations for $U_q(\mathfrak{sl}_2)$ in the equitable presentation. (Received July 11, 2015)