Let P be a nonempty set and $\Gamma \subseteq \text{Sym } P$ be a regular permutation set acting on P. It is well known that, upon fixing $o \in P$, we can associate to (P, Γ, o) a loop $(P, +)$ and conversely to any loop we can associate a suitable regular permutation set. The detailed study of the relationships between these structures is used here for building a new loop (L, \oplus) starting from the loops $(K, +)$, equipped with a well ordering “\preceq”, $(P, \hat{+})$ and assuming that a further loop operation “$+$” (which may also coincide with “$\hat{+}$”) is defined on P.

We call the loop (L, \oplus) slid extension of P by K. We study the dependence of the properties of the new loop (L, \oplus) on the corresponding properties of the initial ones (associativity, automorphic inverse properties, Bol and Moufang conditions) and characterize the nuclei of (L, \oplus). Most of the results presented here appeared in [1].

This procedure can provide examples of proper loops also when the initial loops are groups.

References

(Received July 23, 2015)