Suppose the finite group G acts, preserving orientation, on an orientable surface of genus $p + 1$ where $p > 5$ is prime. Then G is almost Sylow-cyclic (the Sylow p-subgroup G_p is cyclic if p is an odd prime and G_2 has a cyclic subgroup of index at most two) and does not contain $C_2 \times C_4$. In particular, by Kulkarni’s Theorem, G acts preserving orientation on all but finitely many orientable surfaces. This also holds for G acting on a non-orientable surface S with $\chi(S) = -p$, where again $p > 5$ is prime. On the other hand, $C_p \times C_p$ acts on the surface of genus $p + 1$ for $p = 3, 5$. (Received August 07, 2015)