This paper shows that in dimensions $n \geq 2$, for any partition of the set of points in the standard unit n-sphere P_n in \mathbb{R}^{n+1} into $(n + 3)$ or more nonempty sets, there exists a hyperplane in \mathbb{R}^{n+1} that intersects at least $(n+2)$ of these sets. This result is used to prove a result in inversive geometry. A mapping $T : S^2 \to S^n$, for $n \geq 2$, not assumed continuous or even measurable, is called weakly circle-preserving if the image of any circle is contained in some circle in the range space S^n. If such a map T has a range $T(S^2)$ in circular general position, meaning that any circle in S^n misses at least two points of $T(S^2)$, then T must be a Möbius transformation of S^2. (Received March 24, 2015)