In 1985, J. Ericksen proposed a model for uniaxial liquid crystals to explain disclinations (i.e. line defects or curve singularities). It involved not only a unit orientation vectorfield on a region of \mathbb{R}^3 but also a scalar function giving a local probability of orientation order. FH. Lin, in several papers, related this model to harmonic maps to a metric cone over S^2 and studied the regularity of minimizers. The optimal partial regularity result of R.Hardt-FH.Lin in 1993 unfortunately excluded line singularities. This paper accordingly introduced a modified model involving a metric cone over \mathbb{RP}^2, the real projective plane. Here the nontrivial homotopy leads to the optimal estimate of the singular set being 1 dimensional. In 2010, J. Ball and A.Zarnescu discussed a derivation from the de Gennes Q tensor and interesting orientability questions using \mathbb{RP}^2. In recent ongoing work with FH.Lin and T. Huang, we see that the disinclination set necessarily consists of Hölder continuous curves. (Received August 10, 2015)