Balázs Boros* (borosbalazs84@gmail.com). On the existence of positive steady states for deficiency-one mass action systems with two linkage classes. Preliminary report.

The mass action differential equation of chemical reaction networks takes the form $\dot{x}(\tau) = Y \cdot A_\kappa \cdot x(\tau)^Y$, where Y is the matrix of complexes, κ is the reaction rate coefficient function, A_κ is the Laplacian of the labelled Feinberg-Horn-Jackson graph, and x^Y is a shorthand notation for the function with monomial coordinates with the powers being the entries of Y. The existence of positive steady states of such ODE’s is of interest. Clearly, the existence of a positive vector in the kernel of $Y \cdot A_\kappa$ is a prerequisite for the existence of a positive steady state. Based on general theorems, for several mass action systems, the existence of such a positive vector in the kernel of $Y \cdot A_\kappa$ is also sufficient for the existence of a positive steady state. In this talk, we will examine the sufficiency for deficiency-one mass action systems with two linkage classes. (Received August 09, 2015)