Lara Simone Suárez* (suarez@dms.umontreal.ca). Exact Lagrangian cobordism and pseudoisotopy.

Lagrangian submanifolds are central objects in the study of symplectic manifolds. Given two Lagrangian submanifolds L_0, L_1 in the symplectic manifold (M, ω), a Lagrangian cobordism between them is a cobordism $(W; L_0, L_1)$, that can be embedded as a Lagrangian submanifold in $(([0, 1] \times \mathbb{R}) \times M, dx \wedge dy \oplus \omega)$, with the property that near the boundary it looks like the products $[0, \epsilon) \times 1 \times L_0$ and $(1 - \epsilon, 1] \times 1 \times L_1$ for some $\epsilon > 0$. In recent work Biran and Cornea proposed the following conjecture: Exact Lagrangian cobordism implies pseudoisotopy. In this talk we give partial results towards this conjecture. (Received January 10, 2014)