Barry Monson* (bmonson@unb.ca), Dept. Math/Stat, UNB, Box 4400, Fredericton, NB E3B 5A3, Canada, and Leah Berman, Mark Mixer, Deborah Oliveros and Gordon Williams.

Pyramids in 3-space and Crystallographic Groups in 4-space.

The monodromy group $M(\mathcal{P})$ for a polyhedron \mathcal{P} (or indeed for any convex, even abstract, d-polytope \mathcal{P}) is a combinatorial invariant of \mathcal{P}. This group somehow encodes the essential structural features of the polytope. Intuitively, $M(\mathcal{P})$ describes how an abstract set \mathcal{F} of flags can be assembled to produce \mathcal{P}.

Recently (Discrete Mathematics, in press) we have completely described $M(\mathcal{P})$ when \mathcal{P} is an ordinary pyramid over an n-gonal base. Though \mathcal{P} itself is very familiar, $M(\mathcal{P})$ has some interesting features.

Here we focus on the extreme cases $n = 2$ and ∞. In the first instance, when \mathcal{P} is the rather modest pyramid over the digon, $M(\mathcal{P})$ is, surprisingly, isomorphic to the symmetry group of a 4-cube. And, at the other extreme, when $n = \infty$, $M(\mathcal{P})$ acts, in a natural way, as a crystallographic group in real 4-space.

But why dimension 4? Well, look at a pyramid and count flag orbits under the action of the automorphism group of the base. (Received January 10, 2014)