Fix a prime $p > 2$. Let ρ be the Galois representation coming from a non-CM irreducible component \mathcal{I} of Hida’s p-ordinary Hecke algebra. Assume the residual representation $\bar{\rho}$ is absolutely irreducible. Under a minor technical condition, we identify a subring \mathcal{I}_0 of \mathcal{I} containing $\mathbb{Z}_p[[T]]$ such that the image of ρ is large with respect to \mathcal{I}_0. That is, the image of ρ contains $\ker(\text{SL}_2(\mathcal{I}_0) \to \text{SL}_2(\mathcal{I}_0/a))$ for some non-zero \mathcal{I}_0-ideal a. This paper builds on recent work of Hida who showed that the image of such a Galois representation is large with respect to $\mathbb{Z}_p[[T]]$. Our result is an \mathcal{I}-adic analogue of the description of the image of the Galois representation attached to a non-CM classical modular form obtained by Ribet and Momose in the 1980s. (Received August 26, 2015)