We present joint work with Bruce Jordan and Anthony Scholl on the Jacobian J of the modular curve $X = X_0(N)$, where N is a positive integer.

Let \tilde{T} be the ring of Hecke operators on the space of modular forms of weight 2 for $\Gamma_0(N)$, and let T be the image of \tilde{T} in the endomorphism ring of J. The Eisenstein ideal of T is the ideal of those $t \in T$ that lift to an operator $\tilde{t} \in \tilde{T}$ such that \tilde{t} vanishes on the space of Eisenstein series.

Let C be the cuspidal subgroup of J. Because we have $I \subseteq \text{Ann}_T C$, it is natural to ask whether $I = \text{Ann}_T C$.

We prove this equality locally at prime numbers that are prime to the product $6N$ and expect to be able to consider more generally primes (including 2 and 3) whose squares do not divide N.

Let C be the formal cuspidal group for J, the group of degree-0 divisors on X with support on the cusps. There is a natural map $C \to J$ whose image is C; we regard this map as a 1-motive $[C \to J]$. Consideration of the cohomology of this 1-motive reveals the desired connection between the Eisenstein ideal and the cuspidal group of J. (Received September 01, 2015)