The “equivalence principle” of higher category theory says that “meaningful” statements should be invariant under equivalence. First-Order Logic with Dependent Sorts (FOLDS) was introduced by Makkai as a language for describing higher-categorical structures in which this principle would always be true, because there is no “equality” that can distinguish equivalent structures. More recently, Homotopy Type Theory (HoTT) is a foundation for mathematics based on ∞-groupoids, in which Voevodsky’s Univalence Axiom (UA) enforces the equivalence principle for ∞-groupoids by essentially defining “equal” to mean “equivalent”.

In previous work, by “relativizing” UA, we defined a notion of “univalent” or “saturated” 1-category in HoTT that satisfies the equivalence principle. We now extend this to other higher-categorical structures by defining them a la FOLDS inside HoTT. Any FOLDS-signature comes with a canonical notion of “univalence” for its structures in HoTT, and such “univalent structures” satisfy the equivalence principle. Interesting examples include n-categories, \dagger-categories, and double categories.

This is joint work with Benedikt Ahrens and Paige North. (Received August 19, 2014)