
We consider the focusing nonlinear Schrödinger equation in N-dimensions: $iu_t + \Delta u + |u|^{p-1}u = 0$ in the L^2-supercritical regime, i.e. when $p > 1 + \frac{4}{N}$, with finite energy and finite variance initial data. We study solutions in the energy-critical case above the energy threshold $E[u_0] > E[W]$, where W is the stationary solution, or above the mass-energy threshold in the energy-subcritical cases. We obtain the scattering versus blow-up dichotomy above the threshold, which also includes solutions with arbitrarily large mass and energy. This is a joint work with T. Duyckaerts. (Received August 18, 2014)