We study the existence and uniqueness of the stationary distribution of an infinite-dimensional Markov process that arises as the diffusion limit of many-server queues. This process consists of two coupled components, the first component being a real-valued Itô process X with a constant diffusion coefficient and the second being a process Z that takes values in a subset of the Hilbert function space \mathbb{H}^1 and satisfies a somewhat unusual stochastic partial differential equation (SPDE) with a boundary condition that depends on X. Standard Harris recurrence methods for studying uniqueness of stationary distributions are not applicable here because they are not well suited to establishing uniqueness of stationary distributions for infinite-dimensional Markov processes. Instead, we use an asymptotic coupling approach to establish uniqueness, thus demonstrating the applicability of this method in the context of non-standard SPDEs that arise in the analysis of queueing systems. This is joint work with Mohammadreza Aghajani. (Received January 28, 2015)