The edit distance between two graphs on the same labeled vertex set is defined to be the size of the symmetric difference of the edge sets, divided by \(\binom{n}{\lfloor n/2 \rfloor} \). The edit distance function of a hereditary property \(\mathcal{H} \) is a function of \(p \in [0, 1] \) that measures, in the limit, the maximum normalized edit distance between a graph of density \(p \) and \(\mathcal{H} \). It is also, again in the limit, the edit distance of the Erdős-Rényi random graph \(G(n, p) \) from \(\mathcal{H} \).

In this talk, we address the edit distance function for \(\text{forb}(H) \), where \(H = C_h^t \), the \(t \)th power of the cycle of length \(h \). For \(h \geq 2t(t + 1) + 1 \) and \(h \) not divisible by \(t + 1 \), we determine the function for all values of \(p \). For \(h \geq 2t(t + 1) + 1 \) and \(h \) divisible by \(t + 1 \), the function is obtained for all but small values of \(p \). We also obtain some results for smaller values of \(h \). (Received August 16, 2015)