We study several weak forms of shadowing for generic homeomorphisms that do not have hyperbolicity or any similar property.

Theorem 1. For any \(\varepsilon > 0 \) there exists a \(d > 0 \) such that for any \(d \)-pseudotrajectory \(x_k \) there exists a subsequence \(\{k_n\} \) and a trajectory \(y_k \) such that \(\rho(x_{k_n}, y_{k_n}) < \varepsilon \).

Let \(W \subset C^0(X \to X) \) be the set of all homeomorphisms such that for any \(\varepsilon > 0 \) there exists a \(d > 0 \) such that for any \(d \) pseudotrajectory \(\{x_k\} \) there exist points \(y^1, \ldots, y_N (N = N(\{x_k\}, \varepsilon)) \) such that \(x_k \) is \(\varepsilon \) close to one of points \(T^k(y^i) \) for all \(k \in \mathbb{N} \).

Let \(Q \) be the set of all homeomorphisms of \(X \) such that for any \(\varepsilon > 0 \) there exists a finite \(\varepsilon \) net whose iterations are \(\varepsilon \) nets.

Theorem 2. Let \(T \) be a homeomorphism of a compact metric space \(X \), \(CR(X, T) \) be the set of all chain recurrent points, \(M(X, T) \) is the set of all minimal points. Then \(T \in W \) iff \(M(X, T) \) is dense in \(CR(X, T) \). This condition is \(C^0 \) and \(C^1 \) generic. It implies that restriction of \(T \) to \(CR(X, T) \) belongs to \(Q \). Also, there is a Borel probability invariant measure supported on all \(CR(X, T) \). (Received August 22, 2015)